Generalized Bergmann Metrics and Invariance of Plurigenera
نویسنده
چکیده
An invariant kernel for the pluricanonical system of a projective manifold of general type is introduced. Using this kernel we prove that the Yau volume form on a smooth projective variety has seminegative Ricci curvature. As a biproduct we prove the invariance of plurigenera for smooth projective deformations of manifolds of general type.
منابع مشابه
Deformation Invariance of Plurigenera
We prove the invariance of plurigenera under smooth projective deformations in full generality. MSC32J25
متن کاملCanonical singular hermitian metrics on relative canonical bundles
We introduce a new class of canonical AZD’s (called the supercanonical AZD’s) on the canonical bundles of smooth projective varieties with pseudoeffective canonical classes. We study the variation of the supercanonical AZD ĥcan under projective deformations and give a new proof of the invariance of plurigenera. This paper is a continuation of [Ts5]. MSC: 14J15,14J40, 32J18
متن کاملInvariance of Plurigenera of Varieties with Nonnegative Kodaira Dimensions
We prove the invariance of plurigenera under smooth projective deformations of projective varieties with nonnegative Kodaira dimensions. MSC32J25
متن کاملOn Special Generalized Douglas-Weyl Metrics
In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.
متن کاملGeneralized Douglas-Weyl Finsler Metrics
In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996